1	Circulating IGF1 and IGF2 and SNP genotypes in pregnant and non-pregnant women and men.
2	
3	KL Gatford, GK Heinemann, SD Thompson, JV Zhang, S Buckberry, JA Owens, GA Dekker and CT
4	Roberts on behalf of the SCOPE Consortium
5	
6	Robinson Research Institute and School of Paediatrics and Reproductive Health, University of
7	Adelaide SA 5005, Australia
8	
9	Corresponding author (to whom reprint requests should be addressed):
10	Prof Claire Roberts
11	School of Paediatrics & Reproductive Health
12	University of Adelaide SA 5005
13	AUSTRALIA
14	Phone: +61 8 8313 3118
15	Fax: +61 8 8313 4099
16	Email: claire.roberts@adelaide.edu.au
17	
18	Short running title: Circulating IGFs and SNPs in pregnancy
19	Keywords: Human; IGF1; IGF2; pregnancy; SNP genotype
20	Word count: 4971 (abstract plus main text)
21	
22	
23	

24 Abstract

25

26	Circulating IGFs are important regulators of prenatal and postnatal growth, and of metabolism and
27	pregnancy, and change with sex, age and pregnancy. Single nucleotide polymorphisms (SNPs) in
28	genes for these hormones associate with circulating abundance of IGF1 and IGF2 in non-pregnant
29	adults and children, but whether this occurs in pregnancy is unknown. We therefore investigated
30	associations of plasma IGF1 and IGF2 with age and genotype at candidate SNPs previously
31	associated with circulating IGF1, IGF2 or methylation of the INS-IGF2-H19 locus in men (n=134),
32	non-pregnant women (n=74), and women at 15 weeks' gestation (n=98). Plasma IGF1 decreased with
33	age (P<0.001) and plasma IGF1 and IGF2 were lower in pregnant than non-pregnant women or men
34	(each P<0.001). SNP genotypes in the INS-IGF2-H19locus were associated with plasma IGF1
35	(IGF2 rs680, IGF2 rs1004446, IGF2 rs3741204) and IGF2 (IGF2 rs1004446, IGF2 rs3741204, H19
36	rs217727). In single SNP models, effects of IGF2 rs680 were similar between groups, with higher
37	plasma IGF1 in individuals with the GG than GA (P=0.016), or combined GA and AA genotypes
38	(P=0.003). SNPs in the IGF2 gene associated with IGF1 or IGF2 were in linkage disequilibrium, so
39	these associations could reflect other genotype variation within this region or be due to changes in
40	INS-IGF2-H19methylation previously associated with some of these variants. Because IGF1 in early
41	pregnancy promotes placental differentiation and function, lower IGF1 in pregnant women carrying
42	IGF2 rs680 A alleles may affect placental development and/or risk of pregnancy complications.
43	

45 Introduction

46

47	The insulin-like growth factors (IGF), IGF1 and IGF2, are important regulators of placental and fetal
48	development, as well as postnatal growth and metabolism. In humans, circulating IGF1 peaks in
49	adolescence and then falls with age, whereas IGF2 concentrations remain fairly stable after puberty
50	(1). The pubertal peak in plasma IGF1 occurs 1-2 years earlier in girls than boys, resulting in higher
51	circulating IGF1 in girls than boys through adolescence (2, 3). Plasma IGF1 concentrations are fairly
52	similar in men and women (2, 4) but slightly lower circulating IGF1 in adult women than men has
53	been reported in large studies (3, 5). Plasma IGF2 is similar in adolescent and young adult men and
54	women (6, 7), but whether IGF2 remains similar between sexes throughout ageing is unknown.
55	
56	IGF abundance is also altered by pregnancy. Variable changes in circulating IGF1 during the first two
57	trimesters of human pregnancy have been reported, with modest increases of 25-40% compared to
58	non-pregnant women (8) or a gradual overall rise with increasing gestation and highly variable
59	concentrations between women in cross-sectional studies (9, 10). Longitudinal studies have shown
60	stable concentrations from early pregnancy (8-10 weeks) until after 30 weeks' gestation (11, 12), or
61	decreased concentrations in the 1 st trimester and up until 24 weeks' gestation compared to pre-
62	conception (13-15). All these studies agree that maternal circulating IGF1 is 45-200% higher in the 3 rd
63	trimester when compared to non-pregnant women, early pregnancy or pre-conception (8-16). Fewer
64	studies have characterized circulating IGF2 abundance throughout pregnancy. Gargosky et al. (8)
65	reported much higher plasma IGF2 than IGF1 concentrations in pooled plasma from pregnant women,
66	measured by RIA after HPLC separation of samples to completely remove IGF-binding proteins.
67	IGF2 concentrations were highly variable between different stages of pregnancy, but as these were
68	analysed in pooled samples it is difficult to draw conclusions about changes across pregnancy (8). In
69	an early cross-sectional study, plasma IGF2 concentrations were higher in women in the 3^{rd} than 1^{st}
70	trimester of pregnancy and decreased post-partum (10). Two longitudinal studies each measuring
71	IGF2 by RIA after acid-ethanol extraction reported decreases of $\sim 10\%$ in plasma IGF2 in the 1 st
72	trimester compared to concentrations in the same women before pregnancy (14, 15). As pregnancy

74	pre-conception concentrations (15). In addition to effects on maternal metabolism, IGFs act as
75	endocrine signals to enhance placental function and fetal growth (reviewed by 17). We have
76	previously directly demonstrated the endocrine actions of maternal IGFs to enhance placental
77	differentiation and function and hence fetal growth in the guinea pig (18-20). Consistent with this, late
78	pregnancy maternal circulating IGF1 is reduced in human pregnancies complicated by IUGR
79	compared to those with normally grown neonates (11, 21).
80	
81	Genetic variation also impacts the IGF axis and circulating IGF1 and IGF2 differ between individuals
82	according to their genotype at single nucleotide polymorphisms (SNPs) in the genes for IGF1, IGF2
83	and the IGF1 receptor (IGF1R). Within the IGF1 locus, rs12579108 is weakly associated with plasma
84	IGF1 in children in combination with other SNPs (22), whilst the rare C allele of the IGF1 rs7965399
85	SNP was associated with increased plasma IGF1 in older women but not associated with plasma IGF1
86	concentrations in other populations (23-25). Consistent with a positive effect of the IGF1 rs7965399
87	C allele on IGF1, this allele was also associated with a trend towards higher IGF1 in breast tumours
88	(26). Circulating IGF1 is also associated with genotype at the IGF1R rs2229765 SNP, which is
89	predicted to regulate alternative splicing of IGF1R (27). The AA genotype at this SNP predicts lower
90	plasma IGF1 in adult men and women compared to GG individuals in most (28-30), but not all,
91	studies (31, 32), with lower plasma IGF1 also reported in AG heterozygotes (28). The AA genotype
92	also predicts increased longevity (28-30), and shorter male adult height (33), consistent with
93	decreased IGF1 action in these individuals, since absence of IGF1 signalling through IGF1R reduces
94	postnatal growth (34), and IGF1 deficiency predicts longevity (35).
95	
96	IGF2 is located in an imprinted gene cluster on chromosome 11p15.5, containing genes for H19,
97	IGF2, insulin (INS), tyrosine hydroxylase (TH) and an antisense IGF2 gene overlapping with IGF2
98	(IGF2AS). The H19 long non-coding RNA (lncRNA) in this cluster is maternally-expressed and this

progressed, plasma IGF2 returned to pre-conception concentrations (14) or increased to ~10% above

- 99 imprinting appears to remain stable with age (36, 37). *IGF2* and *H19* are reciprocally-imprinted
- 100 during early development and in fetal, placental and many adult tissues *IGF2* is paternally-expressed

101	from the P0, P2, P3 and P4 promoters (36-38). P1 promoter transcripts of <i>IGF2</i> are, expressed from
102	both parental alleles and IGF2 is expressed bi-allelically in liver from older infants and adults, where
103	imprinting of IGF2 is not closely co-regulated with that of H19 (36, 37). We have recently reported
104	discordant imprinting of IGF2 and H19 in first trimester human placenta at 6 weeks' gestation, where
105	expression of <i>IGF2</i> is mono-allelic but imprinting of <i>H19</i> is highly variable (39). Individuals with
106	Beckwith-Wiedemann syndrome and loss of imprinting at this locus, who therefore express maternal
107	and paternal IGF2 alleles often have pre- and postnatal overgrowth, suggesting increased IGF2
108	availability (reviewed by 40). This suggests that SNPs associated with altered DNA methylation at
109	this locus may also regulate circulating IGF2. Indeed, plasma IGF2 concentrations have previously
110	been associated with genotype at two SNPs associated with INS-IGF2-H19 methylation. Specifically,
111	IGF2 rs680 and H19 rs217727 SNPs strongly correlate with methylation of multiple CpG sites within
112	the IGF2 and H19 differentially methylated regions, respectively (41). Circulating IGF2
113	concentrations were higher in individuals homozygous for the A allele at IGF2 rs680 (ApaI),
114	compared to those homozygous for the G allele in middle-aged men (42). The A allele is also part of a
115	haplotype of 4 SNPs that are positively associated with IGF2 protein content of placentas collected at
116	term (43). Others found no effect of IGF2 rs680 on plasma IGF2 concentrations in studies of middle-
117	aged to elderly men and women (44-46). Conversely, the IGF2 rs680 G allele was associated with
118	higher IGF2 mRNA expression in leukocytes (47). Neonatal IGF2 rs680 A alleles were associated
119	with lower birth weight than G alleles in Brazilian and Japanese populations (48, 49). In contrast,
120	maternal (50) or neonatal (43, 50, 51) IGF2 rs680 genotypes were not associated with birth weight in
121	Caucasian populations. A paternally-inherited fetal A allele at IGF2 rs680 was, however, associated
122	with higher maternal circulating glucose post-challenge at 27-29 weeks' gestation (43), consistent
123	with an effect of this allele on maternal adaptation to pregnancy. Only one study has investigated
124	differences in circulating IGF2 with the H19 rs217727 SNP. The presence of one or more T alleles at
125	H19 rs217727 in women was positively associated with birth size and cord blood IGF2 in their
126	neonates, with the TT genotype relatively rare (<5%) in mothers and newborns (52). Methylation of
127	the INS-IGF2-H19 locus also differs according to genotype at IGF2AS rs1004446 (41) and IGF2

128	rs3741204.	IGF2 rs3741204	is located within the P3	promoter of <i>IGF2</i> within the DMR0 region that
-----	------------	----------------	--------------------------	---

- 129 affects imprinting of IGF2 and H19. The A allele is observed in two different 4 SNP haplotypes
- 130 associated with either increased or decreased methylation of the INS-IGF2-H19locus in Beckwith-
- 131 Weidemann syndrome (53). As yet, associations of *IGF2AS* rs1004446 and *IGF2* rs3741204 with
- 132 circulating IGF2 have not been reported.
- 133
- 134 Although relationships between SNP genotype and circulating IGFs have been previously investigated
- 135 in non-pregnant subjects, no studies to date have reported their associations in pregnant women, when
- 136 circulating IGF concentrations regulate placental and fetal growth and development (17). We
- 137 therefore investigated whether relationships between circulating IGF1 and IGF2 abundance and SNP
- 138 genotypes previously associated with circulating IGFs (IGF1 rs12579108, IGF1 rs7965399, IGF1R
- 139 rs2229765, *IGF2* rs680, *H19* rs217727) and/or methylation of the *INS-IGF2-H19* locus (*IGF2* rs680,
- 140 IGF2 rs1004446, IGF2 rs3741204, H19 rs217727), differ between men, pregnant women and non-
- 141 pregnant women.
- 142

143 Materials and Methods

- 144 Study populations and sample collection
- 145 Circulating insulin-like growth factors and genotype data from Caucasian subjects within two
- 146 independent studies are included in the present analysis. Non-pregnant women were from a general
- 147 population cohort and pregnant women from a subset of the Adelaide SCOPE cohort who had a
- 148 normal pregnancy outcome, as described below, while male subjects were from the general population
- 149 or partners of the pregnant women (Table 1).
- 150
- 151 Healthy, non-pregnant adults were recruited from the general population in Adelaide, South Australia
- and gave informed consent for participation in the study. Inclusion criteria were age (18-60 years) and
- 153 not taking regular medication other than the oral contraceptive pill. First-degree (siblings, parent-

child) and second-degree relatives (cousins) were excluded. Ethics approval for this work was given

155 by the University of Adelaide Human Research Ethics Committee (H-021-2005).

156

157 Pregnant women and their partners were recruited from a nested case-control study within the 158 Adelaide SCOPE (Screening for Pregnancy Endpoints) cohort, an international prospective cohort 159 study recruiting patients in Australia, New Zealand (ACTRN12607000551493, Australian and New 160 Zealand Clinical Trials Registry), UK and Ireland, that aims to predict and prevent the major 161 complications of late pregnancy (54). Women who were nulliparous with a singleton pregnancy at 162 <15 weeks' completed gestation and with no more than two previous terminations of pregnancy or 163 miscarriages were recruited into the Adelaide cohort after providing written informed consent at the 164 Lyell McEwin Hospital antenatal clinic (Elizabeth Vale, South Australia). The present study includes 165 only women who had an uncomplicated pregnancy, defined as women who remained normotensive 166 (<140 mmHg systolic and/or <90 mmHg diastolic prior to labour), showed no proteinuria, delivered a 167 live born baby who was not small for gestational age after 37 weeks completed gestation and had no 168 other sign of pregnancy complications. The pregnant women in the present study were the 98 women 169 in whom genotype and circulating IGFs data were available, from a cohort of 133 control women with 170 normal pregnancy outcomes, BMI-matched to pregnant women who later developed preeclampsia or 171 gestational hypertension (55) or gestational diabetes or who delivered before 37 weeks completed 172 gestation (preterm) or a small for gestational age infant. Ethics approval for this work was given by 173 the Ethics of Human Research Committee Central Northern Adelaide Health Service (REC 174 1712/5/2008).

175

Non-fasting blood samples were collected by venepuncture from women at 15 weeks' gestation and their partners at some time during the women's pregnancy, and from general population subjects. Samples were collected into EDTA tubes and placed on ice, before centrifugation at 2400 g for 10 min at 4°C. Plasma and buffy coats were harvested and stored at -80C for subsequent analyses.

180

181 Plasma IGF1 and IGF2 analyses

Page 8 of 31

182	Concentrations of plasma IGF1 and IGF2 were measured by RIA after separation of IGFs and
183	IGFBPs by size-exclusion HPLC under acidic conditions (8, 56). Four fractions of eluate (fraction 1,
184	containing IGFBPs; fraction 2, inter-peak; fraction 3, containing IGFs; and fraction 4, post-peak) were
185	routinely collected for each acidified plasma sample, using collection times based on elution times of
186	125 I-IGF1 and IGF immunoreactivity. Recovery of 125 I-IGF1 was 88.0 ± 1.1% for 5 HPLC runs of
187	human plasma. Samples were assayed in triplicate. Plasma IGF1 concentrations were measured by
188	analysis of neutralized HPLC fraction 3, in an RIA specific for IGF1, using a rabbit polyclonal
189	antibody to human IGF1 (GroPep, Adelaide, Australia). Plasma IGF2 concentrations were measured
190	by analysis of HPLC fraction 3 in a RIA specific for IGF2 (57), using a mouse monoclonal antibody
191	against rat IGF2, which has 100% cross-reactivity with human IGF2 and <10% cross-reactivity with
192	human IGF1 (anti-IGF2 clone, Millipore, USA). Inter- and intra-assay CVs for HPLC separation and
193	IGF1 RIA of a non-pregnant female QC human plasma pool were <19% and <14%, respectively (14
194	assays). Inter- and intra-assay CVs for HPLC separation and IGF2 assays were <15% and <10%,
195	respectively (13 assays).
196	

197 DNA extraction and genotyping

198 A series of single-nucleotide polymorphisms (SNPs) previously shown to affect circulating abundance

199 of IGF1 (IGF1 rs1257918, IGF1 rs7965399, IGF1R rs2229765), circulating abundance of IGF2

200 (IGF2 rs680, H19 rs217727), and/or methylation of the INS-IGF2-H19locus (IGF2 rs680, IGF2

201 rs3741204, IGF2AS rs1004446, H19 rs217727) were genotyped in extracted DNA. DNA was

202 extracted from buffy coats using the X-Tractor Gene (Corbett Robotics Pty Ltd, Queensland,

203 Australia) following the manufacturer's instructions or by the Australian Genome Research Facility

204 (AGRF, Adelaide) using the Machery Nagel Nucleospin 96 well format. Genotyping was performed

205 at AGRF (Brisbane, Australia) using the Sequenom MassARRAY system. The assay used the iPLEX

- 206 Gold homogenous MassExtend (hME single base extension) reaction. Oligonucleotides obtained
- 207 were used to process samples in multiplex format, then printed onto Spectro CHIPs and analysed by

MALDI-TOF mass spectrometry. All genotypes were in Hardy-Weinberg equilibrium and the
genotype pass rate was >96% across all SNPs.

210

211 Statistical analysis

212 Statistical analyses were performed using IBM SPSS Statistics v 21. Circulating IGF concentrations 213 were log-transformed prior to analyses to overcome unequal variances. Effects of group (male, non-214 pregnant female or pregnant female) on circulating IGF concentrations were analysed by ANOVA, 215 including age as a covariate, and groups compared using Bonferroni's correction for multiple 216 comparisons. In initial analyses, BMI did not alter circulating IGF concentrations when included as a 217 covariate in univariate analyses for effects of group or when included in preliminary regression 218 analyses (data not shown) and BMI was therefore not included as a covariate in final analyses. Effects 219 of group on SNP frequencies were assessed by χ -square analysis, or by Fisher's exact test for rare 220 alleles. Predictors of plasma IGF concentrations were derived by stepwise backward linear regression 221 commencing from a model including group, age, and common allele frequency for each SNP. Age 222 was included as a covariate in models with circulating IGF1 as outcome. For each SNP identified as 223 significant or approaching significance (P < 0.1) in stepwise linear regressions, we tested effects of 224 SNP genotype, group and interactions on circulating IGF concentrations in 2-way ANOVA, and 225 performed pair-wise cross-tabulation to determine whether these SNPs were in linkage 226 disequilibrium.

227

228 Results

229 Circulating IGF1 and IGF2

Plasma IGF1 concentrations (Figure 2A) decreased with age (P < 0.001) and differed between groups (P < 0.001). Plasma IGF1 concentrations in women at 15 weeks' gestation were 31% and 45% lower than in men or non-pregnant women, respectively (P < 0.001 for both). Plasma IGF2 concentrations (Figure 2B) tended to decrease with age (P=0.078) and differed between groups (P < 0.001). Plasma IGF2 concentrations in women at 15 weeks' gestation were 9% and 12% lower than in men or nonpregnant women, respectively (P < 0.001 for both). Neither plasma IGF1 nor IGF2 concentrations

- differed between men and non-pregnant women. Effects of age on plasma IGF1 and IGF2
- 237 concentrations were similar between groups.

239 SNP genotype frequencies

- 240 Frequencies of individuals homozygous for the rare allele of the 7 SNPs investigated varied from 18%
- 241 for *IGF1R* rs2229765 to 0% for *IGF1* rs12579108 and *IGF1* rs7965399 (Table 2). Genotype
- 242 frequencies did not differ between men, non-pregnant women and pregnant women (Table 2).

243

- 244 Effects of SNP genotype on circulating IGF1 concentrations
- 245 In overall regression models including data from all subjects, plasma IGF1 differed between groups
- 246 (P<0.001), decreased with age, and differed with common allele frequency of 3 SNPs in the INS-
- 247 IGF2-H19 gene locus (Table 3). Overall, plasma IGF1 correlated positively with numbers of the
- common G allele of *IGF2* rs680 and the common C allele of *IGF2* rs1004446, and correlated
- 249 negatively with numbers of the common A allele of *IGF2* rs3741204. Similar correlations of plasma
- 250 IGF1 with age and SNP frequencies were observed in non-pregnant women (Table 3). Within men
- alone, plasma IGF1 correlated negatively with age and was not correlated with allele number for any
- 252 SNP (Table 2). In pregnant women, plasma IGF1 correlated negatively with age and correlated
- 253 positively with number of the common G allele of *IGF2* rs680 (Table 3).

254

- In separate analyses of associations of each SNP (*IGF2* rs680, *IGF2* rs1004446 and *IGF2* rs3741204),
- 256 plasma IGF1 differed between groups ($P \le 0.002$ for each model), and correlated negatively with
- subject age (P < 0.001 for each model). Plasma IGF1 concentration differed between IGF2 rs680
- 258 genotypes, being higher in GG compared to GA individuals alone (P=0.016) or compared to GA and
- AA genotypes combined (P=0.003, Figure 3). Effects of IGF2 rs680 genotype on plasma IGF1
- 260 concentration did not differ between groups. Plasma IGF1 did not differ between IGF2 rs1004446 or

261 *IGF2* rs3741204 genotypes.

262

263	Effects of SNP genotype on circulating IGF2 concentrations
264	Overall, plasma IGF2 concentrations differed between groups (P=0.002) and with common allele
265	numbers of 3 SNPs in the INS-IGF2-H19gene locus (Table 3) but were not affected by age. Plasma
266	IGF2 correlated positively with number of the common C allele of IGF2 rs1004446, and correlated
267	negatively with numbers of the common A allele of IGF2 rs3741204 and common C allele of H19
268	rs217727 (Table 3). Within men alone, non-pregnant women alone, or pregnant women alone, plasma
269	IGF2 was not correlated with allele frequencies for any SNP (Table 3).
270	
271	In separate analyses of associations of each SNP with plasma IGF2, plasma IGF2 differed between
272	groups ($P \le 0.002$ for each model) but did not differ between IGF2 rs3741204, IGF2 rs1004446 or
273	IGF2 rs3741204 genotypes.
274	
275	Linkage analysis
276	
277	The three SNPs identified in stepwise backward regression as predictive of circulating IGF1 were in
278	linkage disequilibrium, particularly strong between IGF2 rs3721204 and IGF2 rs1004446. Within the
279	overall population, 97.8% of individuals ($P < 0.001$) with AA, AG and GG genotypes at IGF2
280	rs3721204 had CC, CT and TT genotypes, respectively, at IGF2 rs1004446, located 235 nucleotides
281	distant within the IGF2 gene. Genotype of IGF2 rs680 shared 34.4% concordance with IGF2
282	rs1004446 (P=0.007) and 32.0% concordance with IGF2 rs3721204 (P=0.016). Two of the three
283	SNPS identified in stepwise backward regression as predictive of circulating IGF2 were in linkage
284	disequilibrium, IGF2 rs3721204 and IGF2 rs1004446, as described above. Genotype at the H19
285	rs217727 tended towards concordance with IGF2 rs1004446 genotype (P=0.053) but not with IGF2
286	rs3721204 genotype.
287	
288	Discussion

290 This study provides the first comparison of circulating IGF abundance in men, non-pregnant and 291 pregnant women within the same population. Similar plasma IGF1 concentrations in non-pregnant 292 women and men, and falling plasma IGF1 with age were consistent with previous information, whilst 293 a lack of change in plasma IGF2 in these mature adults with sex or age extends previous findings of 294 similar plasma IGF2 abundance in male and female children and adolescent humans. IGF1 and IGF2 295 concentrations in circulation were both lower in pregnant women at 15 weeks' gestation than in either 296 men or non-pregnant women. For the first time, we identified differences in circulating IGF1 between 297 individuals according to common allele numbers in three linked SNPs in the *INS-IGF2-H19* locus. 298 Associations between circulating IGF1 and *IGF2* rs680 genotype remained significant in single SNP 299 models and were consistent between men, non-pregnant women and pregnant women. This suggests 300 that effects of SNP genotype in the *INS-IGF2-H19* locus are consistent between sexes and unaffected 301 by pregnancy. Overall, plasma IGF2 concentrations were also predicted by common allele numbers of 302 three SNPs in the *INS-IGF2-H19* locus, including two SNPS for which common allele number also 303 correlated with plasma IGF1. Our results show genotypes in the IGF2 region of the INS-IGF2-304 H19locus associate with circulating IGF1 and IGF2 concentrations, which requires confirmation in 305 additional independent populations. This is the first report of lower circulating IGF1 in pregnant 306 women with the A allele at *IGF2* rs680 SNP genotype. Given the endocrine actions of maternal IGFs 307 in pregnancy, we hypothesise that IGF2 rs680 genotype may affect placental development and 308 function and maternal adaptation to pregnancy. We are currently exploring these effects in women 309 who experienced pregnancy complications in a separate study. 310

Circulating IGF1 concentrations were lower in women at 15 weeks' gestation than in either men or non-pregnant women in the present study. Our data, obtained using a methodology that completely separates IGFs from IGFBPs prior to assay and prevents IGFBP interference in IGF assays, are consistent with previous reports of reductions in circulating IGF1 during early-mid pregnancy from longitudinal studies (14, 15). We hypothesise that this decrease of ~45% in circulating IGF1 at 15 weeks' gestation, compared to non-pregnant women, largely reflects increased negative feedback on

317	IGF1 production, due to increased IGF1 bioavailability despite reduced total IGF1 concentrations.
318	Proteolysis of IGFBP-3 and other IGFBPs increases rapidly in human pregnancy by ~6-8 weeks'
319	gestation and decreases their binding affinity for IGFs, which increases circulating concentrations of
320	free or unbound IGF available to bind receptors (58-60). The placenta produces two
321	metalloproteinases which proteolyse IGFBPs; pregnancy-associated plasma protein-A (PAPP-A),
322	which cleaves IGFBP-4 and to a lesser extent IGFBP-5 (reviewed by 61), and PAPP-A2, which
323	mostly cleaves IGFBP-5 (62). Haemodilution, due to expansion of maternal blood volume in early
324	pregnancy, may also account for about 20-25% of the fall in circulating IGF1 that we observed (14).
325	
326	The increases in circulating IGF1 reported in later pregnancy (8, 9, 11, 14, 16) are probably a
327	response to increasing maternal circulating GH concentrations stimulated by rapid increases in
328	placental GH production during the second trimester (63). These result in elevated, non-pulsatile GH
329	in maternal circulation from 17-24 weeks' gestation (63, 64). Plasma IGF1 and IGF2 normalise across
330	gestation in women who are deficient in pituitary GH (65), implying that placental GH is a major
331	regulator of IGF abundance during pregnancy. Furthermore, the human placenta itself expresses IGF1
332	and IGF2, and IGF1 gene and protein expression occurs on both maternal and fetal sides of the
333	human placenta (66, 67), and placental tissues might therefore be a source of circulating IGFs during
334	pregnancy. The present study is the first to show that IGF1 falls with age in pregnant women, while
335	the decrease with age in non-pregnant women is consistent with previous reports that IGF1 falls from
336	young to old adulthood (4). Plasma IGF1 did not differ between non-pregnant women and men,
337	consistent with most previous studies, where although the pattern of change in circulating IGF1
338	throughout puberty differed between sexes, plasma concentrations are similar in men and women as
339	young and old adults (2, 4). Small sex differences were evident in a recent multi-centre study with
340	over 15,000 subjects, where circulating IGF1 concentrations were slightly lower in women than men
341	(5).
342	
343	The 12% lower IGF2 in pregnant women at 15 weeks' gestation compared to non-pregnant women at

344 similar ages is consistent with the magnitude of reductions in circulating IGF2 at similar stages of

345 pregnancy reported previously in longitudinal studies (14, 15). This early pregnancy fall in IGF2 was 346 explained by haemodilution (14) due to expansion of maternal blood volume in early pregnancy. Our 347 findings across the adult age range in this study extend those from studies in children throughout 348 puberty and up to young adulthood (6, 7), where plasma IGF2 concentrations also do not change with 349 age or differ between sexes.

350

351 Our results provide the first evidence that SNP genotypes in the INS-IGF2-H19locus associate with 352 circulating concentrations of IGF1, as well as IGF2. Number of the IGF2 rs680 common G allele was 353 positively associated with circulating IGF1 concentrations overall and in non-pregnant and pregnant 354 women analysed separately. Associations of genotypes at this SNP with circulating IGF1 were robust 355 and did not differ between men, non-pregnant or pregnant women in univariate analysis. In the 356 present study, individuals with the IGF2 rs680 GA or GA+AA genotypes consistently had lower 357 plasma IGF1 concentrations than those homozygous for the G allele. The G allele has previously been 358 associated with lower circulating IGF2 than the A allele in middle-aged men (42) but we did not find 359 any association between genotype at this SNP and plasma IGF2 in the present study. This suggests 360 that associations between *IGF2* rs680 and circulating IGF1 do not reflect competition with circulating 361 IGF2 for IGFBP binding sites and consequent effects on circulating half-life. *IGF2* is imprinted and 362 only the paternally-inherited allele is expressed in many, but not all, tissues postnatally (37). 363 Differences in circulating IGF1 between GG and GA+AA genotypes observed in the present study are 364 therefore likely to be smaller than the actual effects of the paternally-expressed alleles of *IGF2* rs680, 365 since the GA heterozygotes will include individuals with paternally-inherited A and G alleles. 366 Because these three SNPs in *IGF2* were in linkage disequilibrium within this population, associations 367 of circulating IGF1 with IGF2 rs680 SNP genotype could reflect variation anywhere within this 368 region. Nevertheless, they do suggest that genotypes at this locus might affect placental development 369 and maternal adaptation to pregnancy via effects on IGF1 or IGF2 abundance, given that both these 370 peptides are endocrine regulators of placental growth and differentiation (17). Further studies are

371	needed to confirm these effects of INS-IGF2-H19locus SNP genotypes on circulating IGF1, to
372	investigate underlying mechanisms, and to assess potential effects on the placenta and mother.
373	
374	Across all groups combined (n=307), SNP genotype at IGF2 rs3741204, H19 rs217727 and IGF2AS
375	rs1004446 correlated with circulating plasma IGF2 in multiple linear regression analyses. A negative
376	association of the common C allele of H19 rs217727 with circulating IGF2 concentrations is
377	consistent with reported effects of this SNP on cord blood IGF2 (52). The present study provides the
378	first evidence that SNP genotype at IGF2 rs3741204 or IGF2AS rs1004446 may affect circulating
379	IGF2. Genotypes at these two SNPS were extremely tightly linked in this population, consistent with
380	their proximity within the IGF2 and IGF2AS genes at 235 nucleotides apart. These associations might
381	therefore reflect effects of either of these SNPS or of other SNPS in this linkage region. Our findings,
382	together with previously reported associations between IGF2 rs680 genotype and circulating IGF2 in
383	one study of middle-aged men (42), are also consistent with the hypothesis that SNPs that are
384	associated with altered methylation of the INS-IGF2-H19locus, such as IGF2 rs3741204, IGF2AS
385	rs1004446 and IGF2 rs680 (41, 53), may affect IGF2 expression and secretion. Further investigations
386	are required to identify which SNP or SNPs in this region alter(s) the methylation and expression of
387	IGF2. The loss of associations of any SNPs with circulating IGF2 in men (n=134), non-pregnant
388	women (n=74) or pregnant women (n=98) in regression models run separately in each group, or when
389	analyzing effects of genotype and group separately for each SNP, probably reflects the limited power
390	due to smaller sample sizes within each sub-group of the present study. Comparing effects of these
391	three SNPS between sexes and in pregnant and non-pregnant populations will require additional,
392	larger studies.
393	
394	In conclusion, plasma IGF1 and IGF2 concentrations were lower in pregnant women at 15 weeks'
395	gestation than in men or non-pregnant women, and did not differ between adult men and non-pregnant

- 396 women. We have identified SNPs in the *INS-IGF2-H19* locus associated with circulating IGF1, as
- 397 well as IGF2. Associations between *IGF2* rs680 and circulating IGF1 did not differ between men,

398	non-pregnant and pregnant women. Because maternal circulating IGFs in early-mid pregnancy are
399	endocrine regulators of placental development and function these genotypes may also predict fetal
400	growth and risk for pregnancy complications. Further studies are needed to confirm these putative
401	effects of SNPs in the INS-IGF2-H19locus on circulating IGF1 and IGF2 concentrations and identify
402	the underlying mechanisms.
403	
404	Declaration of Interest
405	
406	The authors have no conflicts of interest to declare.
407	
408	Funding
409	
410	This work was supported by a grant from the Premier's Science and Research Fund in South Australia
411	(awarded to CTR and GAD) and by the National Health and Medical Research Council of Australia
412	(NHMRC) Project grant 519225 awarded to CTR and GAD. CTR is supported by a NHMRC Senior
413	Research Fellowship (APP1020749). SB is supported by an Australian Postgraduate Award and
414	Healthy Development Adelaide and Channel 7 Children's Research Foundation PhD
415	Scholarship. The sponsors had no role in study design, data analysis or interpretation or the decision
416	to submit the manuscript.
417	
418	Author contributions
419	
420	KLG, JAO, CTR, GAD conceived and designed the research project; KLG, GKK, SDT, JVZ
421	performed sample and data analysis; KLG and CTR drafted the manuscript; all authors contributed to
422	critical revision and approved the final draft of the manuscript.
423	
424	Acknowledgements

425

- 426 We thank all of the subjects who participated in these studies. This work included samples collected
- 427 in Adelaide, Australia, by the SCOPE consortium, and we thank Denise Healy for coordinating the
- 428 Adelaide cohort. We also thank MedSciNet (Sweden), Eliza Chan and SCOPE midwives for their
- 429 support with the SCOPE database.
- 430

References

433	1.	Yu H, Mistry J, Nicar MJ, Khosravi MJ, Diamandis A, van Doorn J & Juul A
434		Insulin-like growth factors (IGF-I, free IGF-I, and IGF-II) and insulin-like growth
435		factor binding proteins (IGFBP-2, IGFBP-3, IGFBP-6, and ALS) in blood circulation.
436		Journal of Clinical Laboratory Analysis 1999 13 166-172.
437	2.	Juul A, Bang P, Hertel N, Main K, Dalgaard P, Jorgensen K, Muller J, Hall K &
438		Skakkebaek N Serum insulin-like growth factor-I in 1030 healthy children,
439		adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body
440		mass index. Journal of Clinical Endocrinology and Metabolism 1994 78 744-752.
441	3.	Brabant G, von zur Mühlen A, Wüster C, Ranke MB, Kratzsch J, Kiess W,
442		Ketelslegers JM, Wilhelmsen L, Hulthén L, Saller B, Mattsson A, Wilde J,
443		Schemer R & Kann P Serum insulin-like growth factor I reference values for an
444		automated chemiluminescence immunoassay system: results from a multicenter study.
445		Hormone Research in Paediatrics 2003 60 53-60.
446	4.	Yamamoto H, Sohmiya M, Oka N & Kato Y Effects of aging and sex on plasma
447		insulin-like growth factor I (IGF-I) levels in normal adults. Acta Endocrinologica
448		(Copenhagen) 1991 124 497-500.
449	5.	Bidlingmaier M, Friedrich N, Emeny RT, Spranger J, Wolthers OD, Roswall J,
450		Korner A, Obermayer-Pietsch B, Hubener C, Dahlgren J, Frystyk J, Pfeiffer AF,
451		Doering A, Bielohuby M, Wallaschofski H & Arafat AM Reference intervals for
452		insulin-like growth factor-1 (IGF-I) from birth to senescence: results from a
453		multicenter study using a new automated chemiluminescence IGF-I immunoassay
454		conforming to recent international recommendations. Journal of Clinical
455		Endocrinology and Metabolism 2014 99 1712-1721.
456	6.	Merimee TJ, Zapf J, Hewlett B & Cavalli-Sforza LL Insulin-like growth factors in
457		pygmies. The role of puberty in determining final stature. New England Journal of
458		Medicine 1987 316 906-911.
459	7.	Juul A, Dalgaard P, Blum WF, Bang P, Hall K, Michaelsen KF, Muller J &
460		Skakkebaek NE Serum levels of insulin-like growth factor (IGF)-binding protein-3
461		(IGFBP-3) in healthy infants, children, and adolescents: the relation to IGF-I, IGF-II,
462		IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation. Journal of
463		Clinical Endocrinology and Metabolism 1995 80 2534-2542.
464	8.	Gargosky SE, Moyse KJ, Walton PE, Owens JA, Wallace JC, Robinson JS &
465		Owens PC Circulating levels of insulin-like growth factors increase and molecular
466		forms of their serum binding proteins change with human pregnancy. Biochemical
467		and Biophysical Research Communications 1990 170 1157-1163.
468	9.	Hills FA, English J & Chard T Circulating levels of IGF-I and IGF-binding protein-
469		1 throughout pregnancy: relation to birthweight and maternal weight. Journal of
470		Endocrinology 1996 148 303-309.
471	10.	Wilson DM, Bennett A, Adamson GD, Nagashima RJ, Liu F, DeNatale ML,
472		Hintz RL & Rosenfeld RG Somatomedins in pregnancy: a cross-sectional study of
473		insulin-like growth factors I and II and somatomedin peptide content in normal human
474		pregnancies. Journal of Clinical Endocrinology and Metabolism 1982 55 858-861.
475	11.	Mirlesse V, Frankenne F, Alsat E, Poncelet M, Hennen G & Evain-Brion D
476		Placental growth hormone levels in normal pregnancy and in pregnancies with
477		intrauterine growth retardation. Pediatric Research 1993 34 439-442.

478	12.	Naylor KE, Iqbal P, Fledelius C, Fraser RB & Eastell R The effect of pregnancy
479		on bone density and bone turnover. Journal of Bone and Mineral Research 2000 15
480		129-137.
481	13.	Black AJ, Topping J, Durham B, Farquharson RG & Fraser WD A detailed
482		assessment of alterations in bone turnover, calcium homeostasis, and bone density in
483		normal pregnancy. Journal of Bone and Mineral Research 2000 15 557-563.
484	14.	Monaghan JM, Godber IM, Lawson N, Kaur M, Wark G, Teale D & Hosking
485		DJ Longitudinal changes of insulin-like growth factors and their binding proteins
486		throughout normal pregnancy. Annals of Clinical Biochemistry 2004 41 220-226.
487	15.	Olausson H, Lof M, Brismar K, Lewitt M, Forsum E & Sohlstrom A Longitudinal
488		study of the maternal insulin-like growth factor system before, during and after
489		pregnancy in relation to fetal and infant weight. Hormone Research 2008 69 99-106.
490	16.	Sowers M, Scholl T, Grewal J, Chen X & Jannausch M IGF-I, osteocalcin, and
491		bone change in pregnant normotensive and pre-eclamptic women. Journal of Clinical
492		Endocrinology and Metabolism 2001 86 5898-5903.
493	17.	Sferruzzi-Perri AN, Owens JA, Pringle KG & Roberts CT The neglected role of
494		insulin-like growth factors in the maternal circulation regulating fetal growth. Journal
495		of Physiology 2011 589 7-20.
496	18.	Sferruzzi-Perri AN, Owens JA, Pringle KG, Robinson JS & Roberts CT Maternal
497		insulin-like growth factors-I and -II act via different pathways to promote fetal
498		growth. Endocrinology 2006 147 3344-3355.
499	19.	Sferruzzi-Perri AN, Owens JA, Standen P, Taylor RL, Heinemann GK,
500		Robinson JS & Roberts CT Early treatment of the pregnant guinea pig with IGFs
501		promotes placental transport and nutrient partitioning near term. American Journal of
502		<i>Physiology</i> 2007 292 E668-E676.
503	20.	Sferruzzi-Perri AN, Owens JA, Standen P, Taylor RL, Robinson JS & Roberts
504		CT Early pregnancy maternal endocrine insulin-like growth factor I programs the
505		placenta for increased functional capacity throughout gestation. <i>Endocrinology</i> 2007
506		148 4362-4370.
507	21.	McIntyre HD, Serek R, Crane DI, Veveris-Lowe T, Parry A, Johnson S, Leung
508		KC, Ho KKY, Bougoussa M, Hennen G, Igout A, Chan F-Y, Cowley D, Cotterill
509		A & Barnard R Placental growth hormone (GH), GH-binding protein, and insulin-
510		like growth factor axis in normal, growth-retarded, and diabetic pregnancies:
511		correlations with fetal growth. Journal of Clinical Endocrinology and Metabolism
512		2000 85 1143-1150.
513	22.	Vella A, Bouatia-Naji N, Heude B, Cooper J, Lowe C, Petry C, Ring S, Dunger
514		D , Todd J & Ong K Association analysis of the <i>IGF1</i> gene with childhood growth,
515		IGF-1 concentrations and type 1 diabetes. <i>Diabetologia</i> 2008 51 811-815.
516	23.	Hernandez W, Grenade C, Santos ER, Bonilla C, Ahaghotu C & Kittles RA IGF-
517		1 and IGFBP-3 gene variants influence on serum levels and prostate cancer risk in
518		African-Americans. Carcinogenesis 2007 28 2154-2159.
519	24.	Patel AV, Cheng I, Canzian F, Le Marchand L, Thun MJ, Berg CD, Buring J,
520		Calle EE, Chanock S, Clavel-Chapelon F, Cox DG, Dorronsoro M, Dossus L,
521		Haiman CA, Hankinson SE, Henderson BE, Hoover R, Hunter DJ, Kaaks R,
522		Kolonel LN, Kraft P, Linseisen J, Lund E, Manjer J, McCarty C, Peeters PHM,
523		Pike MC, Pollak M, Riboli E, Stram DO, Tjonneland A, Travis RC,
524		Trichopoulos D, Tumino R, Yeager M, Ziegler RG & Feigelson HS IGF-1,
525		IGFBP-1, and IGFBP-3 polymorphisms predict circulating IGF levels but not breast
526		cancer risk: Findings from the breast and prostate cancer cohort consortium (BPC3).
527		<i>PLoS ONE</i> 2008 3 e2578.

528	25.	Su X, Colditz GA, Willett WC, Collins LC, Schnitt SJ, Connolly JL, Pollak MN,
529		Rosner B & Tamimi RM Genetic variation and circulating levels of IGF-I and
530		IGFBP-3 in relation to risk of proliferative benign breast disease. International
531		<i>Journal of Cancer</i> 2010 126 180-190.
532	26.	Qian B, Zheng H, Yu H & Chen K Genotypes and phenotypes of IGF-I and IGFBP-
533		3 in breast tumors among Chinese women. Breast Cancer Research and Treatment
534		2011 130 217-226.
535	27.	de Alencar SA & Lopes JCD A comprehensive <i>in silico</i> analysis of the functional
536		and structural impact of SNPs in the IGF1R gene. Journal of Biomedicine and
537		Biotechnology 2010 2010 doi: 10.1155/2010/715139.
538	28.	Bonafe M, Barbieri M, Marchegiani F, Olivieri F, Ragno E, Giampieri C,
539		Mugianesi E. Centurelli M. Franceschi C & Paolisso G Polymorphic variants of
540		insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes
541		affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved
542		mechanism of life span control Journal of Clinical Endocrinology and Metabolism
543		2003 88 3299-3304
544	29	Albani D. Batelli S. Polito L. Vittori A. Pesaresi M. Gaio G. De Angeli S.
545	<i>2)</i> .	Zanardo A Gallucci M & Forloni G A polymorphic variant of the insulin-like
546		growth factor 1 (IGE-1) recentor correlates with male longevity in the Italian
547		nonulation: a genetic study and evaluation of circulating IGF-1 from the "Treviso
5/18		Longeva (TRELONG)" study <i>RMC Goriatrics</i> 2009 9 19
5/10	30	Albani D. Mazzuco S. Polito I. Batelli S. Biella C. Ongaro F. Custafson DR
550	50.	Antuana P. Gaia C. Duranta F. Cabarlatta I. Zanarda A. Siculi M. Callucci M.
551		& Forloni C. Insulin like growth factor 1 recentor nolymorphism rs2220765 and
552		circulating interleukin-6 level affect male longevity in a population-based prospective
552		study (Travisa Longava – TPELONG). The Aging Male 2011 14 257 264
555	31	Biong M. Cram I. Brill I. Johanson F. Salvang H. Alnaos C. Fagarhaim T.
555	51.	Diolig M, Grain I, Drini I, Johansen F, Solvang H, Annaes G, Fagerheim T, Dromnos V, Chanaely S, Durdett L, Voegor M, Livsin C, & Kristonson V
555		Genetymes and healetymes in the insulin like growth featers, their recenters and
550		binding proteins in relation to plagma matchalia lavals and mamma graphic density
550		<i>BMC Modical Conomics</i> 2010 3 0
550	22	Stanilava S. Lyanava M. Karakalav I. Stailav D. Dashkay D. & Manalava I.
559	32.	Aggagiation of 12170C/A ingulin like growth factor 1 recentor nelymorphism and
500		Association of $\pm 51/90/A$ insumining growth factor-1 receptor polymorphism and
562		ansum-like growth factor-1 serum level with systemic lupus erythematosus. <i>Lupus</i>
302 562	22	2015 22 1500-1595. Chie VM, Selvede LC, Creenhard DL Dubertere MV, Chencely SL Evielsen DL
303 564	<i>33</i> .	Chia VIVI, Sakoua LC, Graudaru BI, Kudertone IVIV, Chanock SJ, Erickson KL & McClump VA Digly of testionlar some call tumors and nelymomphisms in the
304 575		a Nicciyini KA Risk of testicular germ cell tumors and polymorphisms in the
565		insum-like growth factor genes. Cancer Epidemiology, Biomarkers and Prevention
566	24	2008 17 / 21 - 726.
567	34.	Laron Z Natural history of the classical form of primary growth normone (GH)
568		resistance (Laron syndrome). Journal of Pediatric Endocrinology and Metabolism
569	<u>.</u>	1999 12 231-249.
570	35.	Laron Z The GH-IGFT axis and longevity. The paradigm of IGFT deficiency.
571	•	Hormones (Athens) 2008 7 24-27.
572	36.	Ekstrom TJ, Cui H, Li X & Ohlsson R Promoter-specific IGF2 imprinting status
573	~ -	and its plasticity during human liver development. Development 1995 121 309-316.
574	37.	Wu H-K, Squire JA, Song Q & Weksberg R Promoter-dependent tissue-specific
575		expressive nature of imprinting gene, insulin-like growth factor II, in human tissues.
576		Biochemical and Biophysical Research Communications 1997 233 221-226.

577	38.	Monk D, Sanches R, Arnaud P, Apostolidou S, Hills FA, Abu-Amero S, Murrell
578		A, Friess H, Reik W, Stanier P, Constancia M & Moore GE Imprinting of IGF2
579		P0 transcript and novel alternatively spliced INS-IGF2 isoforms show differences
580		between mouse and human. Human Molecular Genetics 2006 15 1259-1269.
581	39.	Buckberry S. Bianco-Miotto T. Hiendleder S & Roberts CT Quantitative allele-
582		specific expression and DNA methylation analysis of H19. IGF2 and IGF2R in the
583		human placenta across gestation reveals H19 imprinting plasticity. <i>PLoS ONE</i> 2012 7
584		e51210.
585	40.	Maher ER & Reik W Beckwith-Wiedemann syndrome: imprinting in clusters
586		revisited. Journal of Clinical Investigation 2000 105 247-252.
587	41.	Heijmans BT, Kremer D, Tobi EW, Boomsma DI & Slagboom PE Heritable
588		rather than age-related environmental and stochastic factors dominate variation in
589		DNA methylation of the human IGF2/H19 locus. Human Molecular Genetics 2007 16
590	42.	O'Dell SD, Miller GJ, Cooper JA, Hindmarsh PC, Pringle PJ, Ford H,
591		Humphries SE & Day INM Apal polymorphism in insulin-like growth factor II
592		(IGF2) gene and weight in middle-aged males. International Journal of Obesity and
593		Related Metabolic Disorders 1997 21 822-825.
594	43.	Petry CJ, Seear RV, Wingate DL, Manico L, Acerini CL, Ong KK, Hughes IA &
595		Dunger DB Associations between paternally transmitted fetal IGF2 variants and
596		maternal circulating glucose concentrations in pregnancy. <i>Diabetes</i> 2011 60 3090-
597		3096.
598	44.	Roth SM, Schrager MA, Metter EJ, Riechman SE, Fleg JL, Hurley BF & Ferrell
599		RE <i>IGF2</i> genotype and obesity in men and women across the adult age span.
600		International Journal of Obesity and Related Metabolic Disorders 2002 26 585-587.
601	45.	Sayer AA, Syddall H, O'Dell SD, Chen XH, Briggs PJ, Briggs R, Day IN &
602		Cooper C Polymorphism of the IGF2 gene, birth weight and grip strength in adult
603		men. Age and Ageing 2002 31 468-470.
604	46.	Keku T, Vidal A, Oliver S, Hoyo C, Hall I, Omofoye O, McDoom M, Worley K,
605		Galanko J, Sandler R & Millikan R Genetic variants in IGF-I, IGF-II, IGFBP-3,
606		and adiponectin genes and colon cancer risk in African Americans and Whites.
607		Cancer Causes & Control 2012 23 1127-1138.
608	47.	Vafiadis P, Bennett ST, Todd JA, Grabs R & Polychronakos C Divergence
609		between genetic determinants of IGF2 transcription levels in leukocytes and of
610		IDDM2-encoded susceptibility to type 1 diabetes. Journal of Clinical Endocrinology
611		and Metabolism 1998 83 2933-2939.
612	48.	Gomes MVM, Soares MR, Pasqualim-Neto A, Marcondes CR, Lôbo RB &
613		Ramos ES Association between birth weight, body mass index and IGF2/ApaI
614		polymorphism. Growth Hormone and IGF Research 2005 15 360-362.
615	49.	Kaku K, Osada H, Seki K & Sekiya S Insulin-like growth factor 2 (IGF2) and IGF2
616		receptor gene variants are associated with fetal growth. Acta Pædiatrica 2007 96 363-
617		367.
618	50.	Adkins RM, Somes G, Morrison JC, Hill JB, Watson EM, Magann EF &
619		Krushkal J Association of birth weight with polymorphisms in the IGF2, H19, and
620		IGF2R genes. Pediatric Research 2010 68 429-434.
621	51.	Heude B, Ong KK, Luben R, Wareham NJ & Sandhu MS Study of association
622		between common variation in the insulin-like growth factor 2 gene and indices of
623		obesity and body size in middle-aged men and women. Journal of Clinical
624		Endocrinology and Metabolism 2007 92 2734-2738.

625 52. Petry C, Ong K, Barratt B, Wingate D, Cordell H, Ring S, Pembrey M, Team 626 TAS, Reik W, Todd J & Dunger D Common polymorphism in H19 associated with 627 birthweight and cord blood IGF-II levels in humans. BMC Genetics 2005 6 22. 628 53. Murrell A, Heeson S, Cooper WN, Douglas E, Apostolidou S, Moore GE, Maher 629 ER & Reik W An association between variants in the IGF2 gene and Beckwith-630 Wiedemann syndrome: interaction between genotype and epigenotype. Human 631 Molecular Genetics 2004 13 247-255. 54. 632 Kho EM, McCowan LME, North RA, Roberts CT, Chan E, Black MA, Taylor 633 **RS & Dekker GA** Duration of sexual relationship and its effect on preeclampsia and 634 small for gestational age perinatal outcome. Journal of Reproductive Immunology 635 2009 82 66-73. 636 55. Sykes SD, Pringle KG, Zhou A, Dekker GA, Roberts CT, Lumbers ER & 637 consortium S Fetal sex and the circulating renin-angiotensin system during early 638 gestation in women who later develop preeclampsia or gestational hypertension. 639 Journal of Human Hypertension 2014 28 133-139. 640 56. Owens PC, Johnson RJ, Campbell RG & Ballard FJ Growth hormone increases 641 insulin-like growth factor (IGF-I) and decreases IGF-II in plasma of growing pigs. 642 Journal of Endocrinology 1990 124 269-275. 643 57. Carr JM, Owens JA, Grant PA, Walton PE, Owens PC & Wallace JC Circulating 644 insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs) and tissue mRNA 645 levels of IGFBP-2 and IGFBP-4 in the ovine fetus. Journal of Endocrinology 1995 646 145 545-557. 647 58. Giudice LC, Farrell EM, Pham H, Lamson G & Rosenfeld RG Insulin-like growth 648 factor binding proteins in maternal serum throughout gestation and in the puerperium: 649 effects of a pregnancy-associated serum protease activity. Journal of Clinical 650 Endocrinology and Metabolism 1990 71 806-816. 59. 651 Hossenlopp P, Segovia B, Lassarre C, Roghani M, Bredon M & Binoux M 652 Evidence of enzymatic degradation of insulin-like growth factor-binding proteins in 653 the 150K complex during pregnancy. Journal of Clinical Endocrinology and 654 Metabolism 1990 71 797-805. 655 60. Hasegawa T, Hasegawa Y, Takada M & Tsuchiya Y The free form of insulin-like 656 growth factor I increases in circulation during normal human pregnancy. Journal of 657 Clinical Endocrinology and Metabolism 1995 80 3284-3286. 658 61. Boldt HB & Conover CA Pregnancy-associated plasma protein-A (PAPP-A): A 659 local regulator of IGF bioavailability through cleavage of IGFBPs. Growth Hormone 660 & IGF Research 2007 17 10-18. 661 62. Yan X, Baxter RC & Firth SM Involvement of pregnancy-associated plasma 662 protein-A2 in insulin-like growth factor (IGF) binding protein-5 proteolysis during 663 pregnancy: a potential mechanism for increasing IGF bioavailability. Journal of 664 Clinical Endocrinology and Metabolism 2010 95 1412-1420. 665 63. Eriksson L, Frankenne F, Eden S, Hennen G & Vonschoultz B Growth-hormone 666 secretory profiles in pregnancy - lack of pulsatility for the secretion of the placental 667 variant. British Journal of Obstetrics and Gynaecology 1989 96 949-953. 668 64. Frankenne F, Closset J, Gomez F, Scippo M, Smal J & Hennen G The physiology 669 of growth hormones (GHs) in pregnant women and partial characterisation of the 670 placental GH variant. Journal of Clinical Endocrinology and Metabolism 1988 66 671 1171-1180. 672 65. Hall K, Enberg G, Hellem E, Lundin G, Ottosson-Seeberger A, Sara V, Trygstad 673 **O & Öfverholm U** Somatomedin levels in pregnancy: Longitudinal study in healthy

674		subjects and patients with growth hormone deficiency. Journal of Clinical
675		Endocrinology and Metabolism 1984 59 587-594.
676	66.	Han VK, Bassett N, Walton J & Challis JR The expression of insulin-like growth
677		factor (IGF) and IGF-binding protein (IGFBP) genes in the human placenta and
678		membranes: evidence for IGF-IGFBP interactions at the feto-maternal interface. The
679		Journal of Clinical Endocrinology and Metabolism 1996 81 2680-2693.
680	67.	Iñiguez G, González CA, Argandoña F, Kakarieka E, Johnson MC & Cassorla F
681		Expression and protein content of IGF-I and IGF-I receptor in placentas from small,
682		adequate and large for gestational age newborns. Hormone Research in Paediatrics
683		2010 73 320-327.
684		
685		

687 Figure legends

688

689	Figure 1. Schematic representation of the Homo sapiens INS-IGF2-H19 locus. Exons are
690	represented as blue boxes with intronic regions between exons as black lines. Black arrows
691	above exons show transcription start sites and direction of transcription. Orange boxes
692	indicate the approximate location of differentially methylated regions (DMR). The x-axis
693	shows genomic position in base pairs for human chromosome 11 and the position of single
694	nucleotide polymorphisms (SNPs, denoted by rs number) investigated in this study. This
695	representation is based on human reference genome hg19, dbSNP 138 and RefSeq transcripts.
696	
697	Figure 2. Circulating plasma IGF1 and IGF2 in men (white squares), non-pregnant women (gray
698	circles) and at 15 weeks' gestation in pregnant women (black circles).
699	
700	Figure 3. Plasma IGF1 according to IGF2 rs680 SNP genotype in men (white squares), non-pregnant

701 women (gray circles) and at 15 weeks' gestation in pregnant women (black circles)¹.

¹ Plasma IGF1 data are estimated means and SEM adjusted to an average age of 26.2 years.

Table 1. Subject characteristics¹

	Men	Non-pregnant women	Pregnant women
Number	134	74	98
Age (years)	25.0 (17-59)	23.5 (18-51)	23.0 (14-39)
Body weight (kg)	82.0 (55.0-133.1)	64.0 (43.0-100.0)	72.5 (44.8-125.1)
Height (m)	1.81 (1.64-1.96)	1.66 (1.53-1.78)	1.65 (1.49-1.82)
BMI (kg.m ⁻²)	24.7 (18.0-37.0)	23.1 (17.7-39.5)	26.8 (17.7-44.8)

¹ The present study includes only Caucasian individuals with data for circulating IGFs and genotype. Subject characteristics are presented as median (range).

1 Table 2. SNP genotype frequencies

SNP and population	Genotype, n (%)			Significance ¹
<i>IGF1</i> rs12579108	CC	СА	AA	
Men	130 (98)	2 (2)	0 (0)	
Non-pregnant women	73 (99)	1 (1)	0 (0)	
Pregnant women	93 (96)	4 (4)	0 (0)	0.383
Total	296 (98)	7 (2)	0 (0)	
<i>IGF1</i> rs7965399	TT	TC	CC	
Men	124 (95)	6 (5)	0 (0)	
Non-pregnant women	68 (92)	6 (8)	0 (0)	
Pregnant women	86 (93)	6 (7)	0 (0)	0.591
Total	278 (94)	18 (6)	0 (0)	
<i>IGF2</i> rs680	GG	GA	AA	
Men	71 (56)	48 (38)	8 (6)	
Non-pregnant women	39 (59)	20 (30)	7 (11)	
Pregnant women	50 (52	44 (46)	2 (2)	0.101
Total	160 (55)	112 (39)	17 (6)	
<i>IGF2</i> rs3741204	AA	AG	GG	
Men	54 (43)	60 (47)	13 (10)	
Non-pregnant women	17 (29)	34 (58)	8 (14)	
Pregnant women	34 (37)	43 (46)	16 (17)	0.273
Total	105 (38)	137 (49)	37 (14)	

¹ P-values for differences in genotype frequencies between groups were derived by χ^2 test, except for rare alleles (*IGF1* rs12579108 and *H19* rs217727), where frequencies were compared using Fisher's exact test.

IGF2AS rs1004446	CC	СТ	TT	
Men	58 (45)	58 (45)	14 (11)	
Non-pregnant women	30 (42)	32 (45)	9 (13)	
Pregnant women	36 (37)	45 (46)	16 (16)	0.698
Total	124 (42)	135 (45)	39 (13)	
<i>H19</i> rs217727	CC	СТ	TT	
Men	83 (63)	45 (34)	3 (2)	
Non-pregnant women	45 (62)	24 (33)	4 (5)	
Pregnant women	62 (65)	29 (31)	4 (4)	0.756
Total	190 (64)	98 (33)	11 (4)	
<i>IGF1R</i> rs2229765	GG	GA	AA	
Men	44 (34)	65 (50)	22 (17)	
Non-pregnant women	25 (35)	31 (43)	16 (22)	
Pregnant women	22 (24)	56 (60)	15 (16)	0.222
Total	91 (31)	152 (51)	53 (18)	

1 Table 3. Predictors of plasma IGF concentrations overall, in men, non-pregnant women and

2 pregnant women¹

3

Group	Predictors	r	<i>P</i> -value
Plasma IGF1			
Overall	Group	-0.390	< 0.001
	Age	-0.350	< 0.001
	<i>IGF2</i> rs680 (<u>G</u> >A)	0.190	0.002
	<i>IGF2</i> rs3741204 (<u>A</u> >G)	-0.206	0.001
	<i>IGF2A</i> S rs1004446 (C> <u>T</u>)	0.200	0.001
	Model	0.501	< 0.001
Men	Age	-0.439	< 0.001
	Model	0.439	< 0.001
Non-pregnant women	Age	-0.405	0.004
	<i>IGF2</i> rs680 (<u>G</u> >A)	0.257	0.074
	<i>IGF2</i> rs3741204 (<u>A</u> >G)	-0.281	0.050
	<i>IGF2A</i> S rs1004446 (C> <u>T</u>)	0.246	0.089
	Model	0.535	0.003
Pregnant women	Age	-0.197	0.068
	<i>IGF2</i> rs680 (<u>G</u> >A)	0.206	0.055
	Model	0.289	0.025
Plasma IGF2			
Overall	Group	-0.194	0.002
	<i>IGF2</i> rs3741204 (<u>A</u> >G)	-0.158	0.010
	<i>H19</i> rs217727 (<u>C</u> >T)	-0.103	0.096
	<i>IGF2AS</i> rs1004446 (C> <u>T</u>)	0.153	0.014
	Model	0.257	0.001
Men	No significant predictors		
Non-pregnant women	No significant predictors		
Pregnant women	No significant predictors		

¹ SNP names are shown in the form gene name, SNP number (alleles). Correlations are partial correlations for each factor in the final model, and total correlation for the model. The most common allele is shown first and the ancestral allele is underlined. Predictors of plasma hormone concentrations were derived using the natural log of plasma concentrations as outcome by stepwise backward linear regression commencing with a model including subject group (for overall model only), age and common allele frequency for each SNP.

Fig 3

